AN UVLC ENCODER ARCHITECTURE FOR H.26L

Tu-Chih Wang, Hung-Chi Fang, Wei-Min Chao, Hong-Hui Chen and Liang-Gee Chen

DSP/IC Design Laboratory, EE department, National Taiwan University

ABSTRACT

Variable length code (VLC) is widely used in various com-
pression applications. The latest under development video
coding standard, H.26L, uses an unique pattern VLC code
which is called UVLC in the test model document. In this
paper, an UVLC encoder architecture is proposed to meet
the requirement of TMLS8. This architecture is composed of
a code splitter, a first 1 detector, a shifter, a length accumu-
lator, and a code mux/output. Modified code number tech-
nique and auto self alignment technique are used to simplify
the architecture. By using these techniques, the size of this
architecture is much smaller comparing to traditional VLC
encoder. It has been synthesized in 0.35u cell library. The
size of this architecture is 980 gates while critical path is
less than 6ns.

1. INTRODUCTION

Every video coding algorithm has an entropy coding part to
eliminate statistical redundancy. Traditional video coding
standards, like MPEG, H.261[1] and H.263 series (H.263[2],
H.263+, H.263++), use VLC as the entropy coding tool. Ev-
ery symbol has its VLC code according to the probability of
occurrence. Thus, the VLC encoder must contain all of the
VLC tables to look up VLC code and its length. A typi-
cal entropy coding block of these standards is shown in Fig.
1. Symbols are fed into various VLC tables to look up the
codeword and length. Then the codeword and length infor-
mation goes into the VLC encoder to form the final output
codeword. The VLC encoder combines input codeword and
the codeword in buffer, then outputs word by word. The ad-
vantage of this architecture lies in the fact that every kind of
symbol could find a proper VLC table to fit its probability.
H.26L tries another way to solve the entropy coding
problem. It uses an unique VLC pattern which is called
UVLC. Since the VLC pattern is fixed, the optimal symbol
probability is pre-determined. And because the probability
of each symbol’s occurrence may not be the optimal dis-
tribution to this VLC pattern, H.26L combines more than
one symbols to form a new symbol whose probability dis-
tribution is similar to this pattern. The entropy coding block
for H.26L could be illustrated as Fig. 2. Symbols are pro-
cessed by the probability transform tables to form a code

0-7803-7448-7/02/$17.00 ©2002 IEEE

Controls
{Byte alignment. etc) }
Symbols Cadeword ™
®Runlengeh, MVD.ctey | =3 > 5 | Output Word
e A S or——»
a0 »l &0
: Length |

Fig. 1. Entropy coding block for JPEG, MPEG, H.261 and
H.263 series video coding standards

Controls
e alignment..efc) }

By
Symbols :] 3 fee)
(Run-lengin, MVD_et) | 3o 8 s 8 < |Output Word
e s S E——
28 2| cote | O
. g S| Number|

Fig. 2. Entropy coding block for H.26L

number. The probability distribution of this code number is
then nearly optimal to the UVLC pattern. UVLC encoder
accepts code number and output codeword word by word.
The advantage of UVLC is the simplicity of final output
which facilitates encoder and decoder design. Moreover,
UVLC could be reversely decoded because it is a kind of
RVLC (Reversible VLC) pattern.

Previous state-of-the-art VLC encoder design could be
found in [4], [6] and [7]. All of these VLC encoder ar-
chitecture are parallel architecture. Bit-serial approach re-
quires very high operating speed at the output stage and the
throughput is much lower than parallel architecture. Lei[6]
used three shifters to achieve faster operation. But the draw-
back is the larger gate count. Mario[7] used more compact
VLC encoder architecture for JPEG encoder design. How-
ever, the complexity of this VLC encoder has been moved
to the multiplexer control, which is not depicted in [7].

This papaer is organized as follows. New H.26L al-
gorithms related to this design are described in-section 2.
Techniques used to simplify the architecture are illustrated
in section 3. Section 4 shows the proposed UVLC architec-
ture. Implementation result and the comparison with other
VLC encoders are shown in section 5. Finally, a conclusion
is given in section 6.

IT- 308



1
0x,1
0x,0x,1
0x,0x,0x,1
0x,0x,0x,0x,1

...........................

Fig. 3. Rule of UVLC coding pattern
2. UVLC IN H.26L TEST MODEL

UVLC coding pattern is illustrated in Fig. 3, which could
be found in [3]. It can be treated as two parts, the infor-
mation part and the end bit. The information part is com-
posed of two bits segments with leading bit 0. The second
bit could be 0 or 1 which appears in Fig. 3 as z,,. The end
bit is always a 1 to indicate a codeword’s end. Codewords
are sorted by length and information of z,, ...z to assign
code numbers. The relation of code number and codeword
is shown in Table 1.

Header contains information of temporal reference(TR,
8bit), picture QP(PQP, 5bit), format(1 bit) and end of se-
quence(EOS, 1bit). Total information is 15 bits long. The
information is stuffed into z14 . . . o to form a 31 bits code-
word. Header coding doesn’t follow code number rules and
needs to be processed seperately.

Table:1. UVLC code table

Code Number Codeword
0 1
1 001
2 011
3 000O01
4 00011
5 01001
6 01011
7 000O0O0CO001
8 000O0O011

3. MODIFIED CODING NUMBER TECHNIQUE

An UVLC encoder must extract codeword information and
code length information from code number. But there is no
easy way to extract codeword and code length from code
number due ito their complex relations. The circuit con-
verting.code number to codeword and code length will be
large. “Since code number is an intermediate signal looked
up from the probability transform tables. We could change
code number to reduce hardware implementation cost by
adjusting code number in probability transform tables. And

Table 2. Modified code table
Code Number || Binary Codeword

1 00001
00010
00011
00100
00101
00110
00111
01000 | O
01001 | O

wlo|g|loalunfw|win
lo|lo|o|o|o|o
o|ofl+|r|llollcio|o
lollojolo|o|ofr|lo]r
o|o|lrllojirilo|rir
IPllo|RriririP

there will be no overhead since the size of probability trans-
form tables remains the same.

Number,p;. = Numberorg. + 1 )

The optimized code numbers are shown in Table 2. The
relation between original code number and optimized code
number is shown in equation (1). The binary expressions
of optimized code numbers are also shown in Table 2. We
could observe that the underline part of the binary expres-
sion column is equal to the underline part of codeword col-
umn. And the first 1’s location of optimized code could
reveal the codeword length. Equation (2) shows the rela-
tion between optimized code number and code length. For
example, the binary expression of code number 7 is 00111.
The location of first 1 is 2 bit left from LSB. The code length
could be calculated as 2 x 241 = 5. From Fig. 3, the code-
word pattern of length 5 is Ox;0z¢l. The left two bits of
7(11) are then stuffed into z; and z to form the codeword
01011.

Length = First1's Location x 2 + 1 )

4. PROPOSED UVLC ENCODER ARCHITECTURE

Fig. 4 shows the proposed UVLC encoder architecture. It
composed of a first 1 detector to transform modified code
number to length of the codeword, a code splitter inserting
zero between information bits, a length accumulator to con-
trol the shifter to right location, a shifter to align codeword
with output buffer, and a code mux/output block to com-
bine codeword in buffer and input codeword. The function
of each block is discussed as follows.

4.1. First 1 Detector

The function of this block is to get the code length from the
location of the first 1. The truth table is shown in Table 3.
Note that the output is always increased by two because the
code length of UVLC is always an odd.

IT - 309



Modified

Codeword OE

Output
Codeword

Fig. 4. Proposed UVLC encoder architecture

Table 3. Truth table of first 1 detector

Input Output
0000 0000 0000 0OO1 1
0000 0000 0000 001x 3
0000 0000 0000 01xx 5
0000 0000 0000 1xxx 7
0000 0000 0001 xxxXxX 9
0000 0000 001lx xxxXX 11
0000 0000 O0lxx xXXXX 13
0000 0000 1xxx XXXX 15
0000 0001 xxxXX XXXX 17
0000 001x XXXX XXXX 19
0000 01xxX xXxXX XXxX || =~ 21
0000 1xXXX XXXX XXXX 23
0001 xXXXX XXXX XXXX 25
001x XXXX XXXX XXXX 27
01xXX XXXX XXXX XXXX : 29
1XXX XXXX XXXX XXXX 31

4.2. Code Splitter

Code splitter is a wiring box and does not contain any gate.
Its function is simply adding 0 between modified code num-
ber and adding one bit 1 at LSB. MSB of the input is thrown
because it doesn’t contain any information. For example, if
the input is 001 0000 1010 1111, the output will be 0001
00000000 01000100 01010101 1. The output of code split-
ter is the same as output codeword except the first 1. This

additional 1 will be eliminated at the stage of code mux/output.

Shifter Ctrl Byte Alignment

Fig. 5. Length Accumulator with byte alignment

Code Splitter

Output Output word

T
Data Enable

OE

Fig. 6. Code mux/output
4.3. Length Accumulator

Fig. 5 is the architecture of length accumulator. Traditional
length accumulator only contains an adder and a register.
Carry out of the adder is treated as output enable signal. The_
length accumulator here is added some logic to complete
byte alignment function. If byte alignment signal is high,
the byte alignment block will get input data from length
register and add it to the multiplies of 8. If byte alignment
signal is low, the byte alignment block will get input data
from adder and pass it to the register.

4.4. Shifter

The shifter is a barrel shifter. The width is the same as out-
put buffer. In most of VLC architecture, barrel shifter is
the largest part in the whole architecture. The size of this
shifter is much related to total gate count of this architec-
ture. The minimum value is 31 bits which is according to
header length. But we set it to 48 bits in order to avoid
overflow.

4.5. Code mux/output

Fig. 6 shows the architecture of code mux/output block.
It is constructed by one OR plain, two multiplexer plains
and one output buffer register. OR plain is used to combine
codeword in output buffer and codeword from code splitter.
Input codewords are stuffed from MSB to LSB in output
buffer. If valid number of bits in output buffer is larger than
16, OE will be high to indicate output codeword (16 bits
from MSB) is valid. And output buffer should be shift left
by 16 bits. This job is done by OE MUX. DE MUX is
used to form a feedback loop if input at this cycle is not
valid. Since OE MUX is in the feedback loop of DE MUX,
codeword output will be independent to valid data input.
For example, if the input is a header at first cycle, a 19 bits
codeword at second cycle, and no valid data at third cycle,
the output will be 16 bits of header at first cycle, 15 bits of
header and 1 bit of 19 bits codeword at second cycle, and 16
bits of 19 bits codeword at third cycle. Finally, the output
buffer contains 2 bits of 19 bits codeword from LSB. From
the discussion above, it could be known that the maximum

II-310



Output Buffer 0011 01011
Code Splitter 1011
OR Plain Out 001101011011

Fig. 7. OR plain example

throughput of this architecture is 16 bits per clock cycle.
Another function for the OR plain is to eliminate the
first 1 output from code splitter. This is automatically done
by the codeword alignment. Since the codeword is aligned
to the output buffer, the first 1 of the code splitter output
will align to last 1 of the output codeword buffer. The OR
plain will eliminate this additional 1. An example is shown
in Fig. 7. The output buffer contains codewords ”001” 1~
”01011”. Now a new input codeword ”011” with leading 1
is outputted from code splitter. The OR plain will combine
these codeword to 001 1 01011 011”. Note that the leading
1 in input codeword is combined to the tail 1 of 01011,
This technique requires no additional circuit to deal with
the first 1 problem from code splitter and is very efficient.

4.6. Header Consideration

The header of H.26L is a 31 bits UVLC pattern. But it
doesn’t use code number concept. The information of header
is directly inserted into the information part of UVLC. In
this architecture, MSB of input is reserved to indicate header.
If MSB is set, the code length will be 31 according to Table
3. And other 15 bits could be filled up with header informa-
tion. Since the bits after first 1 indicates information part of
UVLC in our architecture, header output could be integrated
in this architecture with no additional overhead.

5. IMPLEMENTATION AND COMPARISON

To reduce design period and provide technology indepen-
dent portability, HDL design flow is used. This architecture
has been synthesized in TSMC 0.35u technology. The gate
count is 980 while delay constrain is set to 6ns. Comparing
to other VLC architecture, this architecture is much smaller
and the speed is also sufficient for today’s application. De-
tailed comparison table is given in Table 4.

Table 4. Comparison of several VLC encoder architecture

Critical path Area

delay (ns) (gates)

Lei’s (6] 5.56 10000
JAGUAR [7] 5.38 4793
Chang’s [4] 5.72 2601
Proposed 5.92 980

6. CONCLUSIONS

In this paper, an efficient and cost effective UVLC encoder
architecture for H.26L is proposed. The architecture could
process one symbol per clock cycle. And the maximum
throughput is 16 bits per clock. It has been synthesized to
gate level in TSMC 0.354 technology and can operate at
166Mhz. This proposed architecture is very compact and
uses less hardware resource by modifying codeword num-
ber and codeword alignment technique. Due to its good
area-timing property, this architecture is suitable for H.26L
video codec design.

7. REFERENCES

[1] Draft ITU-T Recommendation H.261, Video codec for
audiovisual services at p x 64 kbit/s, ITU-T, 1993.

[2] Draft ITU-T Recommendation H.263, Video coding
for low bitrate communication, ITU-T, 1997.

[3] ITU-T, H26L TML8 Document from
http://standard.pictel.com, Sep., 2001.

[4] Hao-Chieh Chang, Liang-Gee Chen, Yung-Chi Chang
and Sheng-Chieh Huang, “A VLSI Architecture De-
sign of VLC Encoder for High Data Rate Video/Image
Coding”, Proceeding of ISCAS 2000, vol. 4, pp. 398-
401, May, 2000.

[5] Shaw-Min Lei, M.T. Sun, K.Ramachandran and S.
Palaniraj, ”VLSI Implementation of an Entropy Coder
and Decoder for Advanced TV Application”, Proceed-
ing of ISCAS 1990, pp. 3030-3033.

[6] Shaw-Min Lei and Min-Ting Sun, ”An Entropy Coding
System for Digital HDTV Applications”, IEEE Trans-
action on Circuits and Systems for Video Technology,
vol. 1, no. 1, pp. 147-154, Mar., 1991.

{7] Mario Kovac and N. Ranganathan, "JAGUAR: A Full
Pipelined VLSI Architecture for JPEG Image Compres-
sion Standard”, Proceeding of IEEE, vol. 83, no. 2,
Feb., 1995.

[8] Yuji Fukuzawa, Kouichi Hasegawa, Hirokazu Hanaki,
Eiji Iwata and Takao Yamazaki, A Programmable
VLC Core Architecture for Video Compression DSP”,
Proceeding of IEEE workshop on signal processing
systems-Design and Implementation, pp. 469, Oct.,
1997.

II-311



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


